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SUMMARY 
Two approaches which employ the finite element method to solve for large-scale, coupled, incompressible 
flows through adjacent porous and open domains are developed and evaluated in a model for the 
spontaneous ignition of coal stockpiles. Both formulations employ the Navier-Stokes equations do describe 
flow in the open region; two different descriptions, Darcy's law and the Brinkman equation, are employed 
to model flows within the porous region. The formulation which uses Darcy's law employs the Beavers- 
Joseph slip condition and a novel implementation of the interfacial conditions. The other approach invokes 
the Brinkman equation: this considerably simplifies the implementation of matching conditions at the 
interface between the porous and open fluid domains, but also results in velocity boundary layers in the 
porous region adjacent to this interface which can be difficult to resolve numerically. A direct comparison 
of model results shows that the Darcy-slip formulation produces solutions which are more accurate and 
more economical to compute than those obtained using the Brinkman formulation. 

1. INTRODUCTION 

There is a vast body of research dealing with the mathematical modelling of flows through 
porous media. The modelling of coupled flows through adjacent porous and open domains has 
received much less attention; nevertheless, these porous/open flows occur in many interesting 
and important systems. Examples of engineering applications include porous the 
mushy zone in alloy s~lidification'~ and heat transfer in walls with fibrous i n s ~ l a t i o n . ~ , ~  
Bio-engineering systems include the lubrication of human and artificial joints and blood flow 
in lungs and arteries." Flow through fractured porous media also involves the coupling between 
open and porous regions; examples include the flow of water, oil or magma through geological 
media.' '-14 Excellent overviews of prior research on porous/open flows have been presented by 
Tien and Hong,I5 Rudraiah16 and Prasad.I7 

Our investigation into the methodologies employed for solving this class of problems was 
motivated by the study of the spontaneous combustion of coal stockpiles.18 Piles of coal being 
transported to or stored at utility plants react exothermically with oxygen and can ignite, which 
is both dangerous and costly. Buoyancy-driven convection is an important factor in setting the 
ignition conditions by transporting oxygen into the pile and simultaneously transporting heat 
away. Our study of this system18 was the first to include a self-consistent description of the 
coupled chemical reaction, mass transport and natural convective flows both within the stockpile 
(modelled as a porous medium) and in the air surrounding the pile. Herein we address the issues 
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involved with the formulation and numerical solution of such coupled flows in porous/open 
fluid systems. 

The first issue which arises in the formulation of a mixed porous/open flow problem is the 
proper mathematical form of the governing equations in each region. The flow of an incompress- 
ible fluid in a homogenous domain is well represented by the Navier-Stokes equations; however, 
there are several possible choices for describing flow in a porous domain. The two most 
commonly used equations for flows in porous media are Darcy’s law and Brinkman’s equation. 
We shall outline some of the features of these equations below, followed by a brief discussion 
of their prior application to describe porous/open fluid flows. 

Well over a century ago Darcy” presented an empirical model which stated that the superficial 
velocity of a fluid in a saturated porous medium is related linearly to the pressure gradient in 
the medium. With the inclusion of the body force term, Darcy’s law takes the form 

I P V P =  - - o ’ + p g ,  
K 

where is the pressure, i is the volume-averaged fluid velocity, p is the viscosity, K is the 
permeability of the porous medium, p is the fluid density and g is the gravity vector. In 1947 
Brinkman2’ pointed out that Darcy’s law does not include a term to account for the viscous 
interaction among fluid particles, so that it cannot represent boundary layers such as those 
which arise near an impermeable wall or a faster-moving fluid. To overcome this apparent 
deficiency, Brinkman presented the following modified relation which includes a viscous force 
term taken from the Stokes equation as well as those terms present in Darcy’s original equation: 

(2) 
- P VP = - - t + p‘V2t + pg, 

K 

where p‘ is an effective viscosity which is a function of the fluid viscosity and the characteristics 
of the porous medium. 

There has been a long and ongoing debate regarding the appropriateness of Darcy’s law versus 
the Brinkman equation. Certainly Darcy’s law is correct for one-dimensional and slowly spatially 
varying flows. The ability of Darcy’s law to describe experimental measurements of flows through 
porous media has been demonstrated for an extensive variety of viscous liquids at low Reynolds 
numbers.’ 1-23 In addition, IrmayZ4 has shown that Darcy’s law can be derived theoretically by 
spatially averaging the Navier-Stokes equations in a random porous medium in the limit of 
low Reynolds number. However, Darcy’s law does not hold in all situations; modifications have 
been suggested by F~rchheimer,’~ Ergun,26 Vafai and Tien27 and Joseph et dZ8  as well as by 
Brinkman. The validity of the Brinkman equation has been rigorously verified in the limit of 
very low volume fraction of solids, i.e. porosities very near ~ n i t y , ~ ” ~ ~  and many studies have 
addressed the proper choice for the effective viscosity p’.20*3 1-36 However, many researchers 
have pointed out that the Brinkman equation is not rigorously correct in situations where the 
volume fraction of solids is ~ignificant,~’.’~.~~ which is often the case for a typical porous medium. 

The choice of employing Darcy’s law or the Brinkman equation for the porous domain in a 
porous/open fluid problem involves not only the fundamental issues of appropriateness discussed 
above but also issues which arise in linking the flows across the interface between the two 
domains. Since only a first-order derivative of the pressure is present in Darcy’s law, equation 
(l), the complete specification of all velocity components is not possible along the boundaries 
of the porous region; this poses special problems when attempting to match conditions in an 
adjacent open domain, where conditions for all velocity components must be specified for the 
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Figure 1 .  The flow of fluid in an open channel overlying a saturated porous medium. A boundary layer of thickness d 
connects the flow of the open fluid region to the flow within the porous medium. After Beavers and Joseph38 

Navier-Stokes equations. To address these issues, Beavers and Joseph38 performed experiments 
measuring the mass efflux of Poiseuille flow over a permeable block and postulated that the 
flow field must take on a form similar to that shown in Figure 1. Arguing that Darcy’s law 
would hold in the interior of the porous region but not necessarily near the boundary, Beavers 
and Joseph proposed that the interfacial velocities of the exterior fluid and the fluid within the 
porous region could be related by an ad hoc boundary condition which admits a discontinuity 
in the tangential component of flow. This condition was expressed as 

where the x-co-ordinate direction is taken to be parallel to the interface and the y-co-ordinate 
direction is perpendicular to the interface (see Figure 1). The subscript ‘0’  refers to the open 
fluid domain where the Navier-Stokes equations hold, the subscript ‘p’ refers to the porous 
medium in which Darcy’s law holds, and a is a slip coefficient which depends only on the 
properties of the porous medium. Subsequent experimental investigations of porous/open fluid 
systems supported the ideas behind the Beavers-Joseph boundary Theoretical 
derivations and further modifications of this condition have also been presented which give 
equation (3) a more solid fundamental 

Interestingly, although Beavers and Joseph were the first to propose such a relationship for 
adjacent flows between an open channel and a porous medium, the idea of fluid slip at solid 
boundaries has been proposed in many other contexts. Over 165 years ago N a ~ i e r ~ ~  formulated 
a slip condition in which a discontinuity in the tangential fluid velocity at a solid boundary was 
assumed to be proportional to the shear stress in the fluid. This approach has also been employed 
in modelling macroscopic flows in several other systems where the no-slip hypothesis yields 
unsatisfactory results. The infinite stress predicted as a result of the no-slip hypothesis applied 
at a moving contact line during coating flows has led to the use of slip conditions in some 
 formulation^.^^ Macroscopic slip phenomena have also been invoked to describe the flows of 
polymer fluids which exhibit complicated rheological beha~iour .~’  

The use of the Brinkman equation (2) in a two-domain system poses no special difficulties, 
since the second-order derivative of velocity allows for the specification of continuous normal 
and tangential velocities as boundary conditions across the porous/open fluid interface. In 
addition, this implementation can be made to  be consistent with the Darcy-slip formulation 
described above under some special conditions. Neale and Nader4’ have shown for the case of 
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flow in a channel bounded by a porous layer that the choice of the Beavers-Joseph slip coefficient 
as 

will yield identical velocity profiles in the open fluid layer for both the Darcy and Brinkman 
formulations. 

Buoyant, incompressible flows in a coupled porous/open fluid system provide the basis for 
our comparative study of the Darcy and Brinkman formulations; such flows have been modelled 
in the past using both these implementations (see Reference 17 for an extensive list of references). 
Nield52 first studied the onset of natural convection in a system with an open fluid overlying a 
porous lium. In that study and a later Nield employed Darcy’s law with the 
Beavers- ieph boundary condition. Pillatsis et al. 5 3  and Taslim and NarusawaS4 also employed 
the Dart irmulation to study the onset of convection in various configurations. The Brinkman 
formulation was employed by Somerton and Catton” to study natural convection in a fluid 
above a heat-generating, saturated porous medium. Poulikakos and Kazmierczak’ also used 
the Brinkman formulation to study flow in a channel with a porous layer in both parallel plate 
and cylindrical geometries. Nishimura et al. 5 6  studied convection in a fluid overlying a saturated 
porous medium with the Brinkman equation. Beckerman et al. 7-59 performed extensive analyses 
of flow in square enclosures driven by an imposed horizontal temperature gradient. Song and 
Viskanta6’ continued this work for an anisotropic porous layer. The work presented in 
References 57-60 employed the Brinkman formulation. 

Unfortunately, none of the above studies compared the performance of both the Darcy-slip 
and Brinkman formulations in the context of such problems. We endeavour to make this 
comparison here by solving the coal stockpile ignition problem’a using finite element imple- 
mentations of both approaches. We emphasize that we do not wish to advocate the use of 
Darcy’s law or the Brinkman equation on the basis of fundamental correctness; rather we wish 
to address the implications of their use for the description of large-scale, coupled flows within 
porous and open fluid regions. 

Before embarking on this comparison, it is useful to consider the physical and mathematical 
characteristics of flows near the interface between a porous and an open fluid region. Saffman43 
pointed out that the boundary layer within the porous medium, postulated originally by Beavers 
and Joseph,3a should scale with the square root of the permeability of the medium, i.e. 
6 - O ( K ” ~ ) .  Neale and Nadersl later solved for the thickness of the boundary layer in the 
specific configuration, depicted in Figure 1, of a porous region bounded by an open fluid channel. 
Here the boundary layer thickness 6 is defined as the distance from the interface to the point 
where the velocity predicted by the Brinkman formulation is within 1% of the bulk or Darcy 
value. They found that in the case of channel flow with p = p’ the boundary layer thickness 6 
is dependent on the permeability K and channel thickness h according to the relation 

Figure 2 shows this boundary layer thickness plotted as a function of the porosity E for 
several different channel widths when the Kozeny-Carman relation” is employed to determine 
the permeability of the medium (i.e. K = Die3/150(1 - e)’, where D, is the average particle 
diameter). The boundary layer thickness decreases dramatically with decreasing porosity and is 
less than a few particle diameters in width over a wide range of typical values for porosity. When 
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Figure 2. A plot ofequation (5) shows that the porous boundary layer thickness S is of the order of one particle diameter 
or smaller for a wide range of porosities E and dimensionless channel widths h/D,.  For exterior flows the dimensionless 

channel width would correspond roughly to the thickness of the open fluid region boundary layer 

the width of the boundary layer is comparable with or less than the average particle size of the 
porous medium, the averaging techniques used to derive the Darcy drag term in the Brinkman 
equation are not rigorously ~ a l i d . ~ ~ * ~ " ' ~  The accurate resolution of this boundary layer is a 
significant challenge for any numerical method, especially since the velocity gradients in these 
systems are typically very steep, with tangential velocities often decreasing by several orders of 
magnitude from values in the open region to those within the porous region. These challenges 
will be made clear in Section 4.2 by our numerical calculations. 

Interestingly, the aspect of boundary layer resolution in the numerical solution of coupled 
porous/open flow problems using the Brinkman equation has received little attention. Nishimura 
et al. 5 6  employed the finite element method to solve for a streamfunction-vorticity formulation 
using Brinkman's equation and found that model results were very sensitive to the discretization 
in the porous medium near the porous/open fluid interface. Their solutions changed dramatically 
unless the element placed adjacent to the interface was at least as small as K ~ / ~ ,  which is consistent 
with the scaling of the boundary layer discussed above. This concern about boundary layer 
resolution is notably absent in virtually all other studies, although Poulikakos and Kazmierc- 
~ a k , ~  Beckerman et al. 5'-s9 and Song and Viskanta6' employed ad hoc schemes to smooth the 
variation in physical properties between the open fluid and porous domains. Typical of this 
approach is the scheme of Beckerman et aLS7 which involved the application of a control volume 
discretization to a single equation written for both domains. This single equation contained a 
binary parameter which selectively chose the appropriate terms of the equation to yield the 
Navier-Stokes equation in the open domain and Brinkman's equation in the porous region. A 
harmonic mean formulation for the interface diffusion coefficients between two control volumes 
was also employed. Beckerman et al. claimed that this formulation automatically satisfied the 
matching conditions at the interface, since the algorithm ensured continuity of velocities and 
stresses at every point in the computational domain. In addition, the approach was promoted 
for its ease of implementation and its ability to avoid the need for an excessively fine grid at 
the porous/fluid layer in te r fa~e .~  Comparisons of predicted temperature fields by Beckerman 
et al. 58*s9 agreed reasonably well with experimental data, yet the solution streamlines exhibited 
discontinuous slopes at the interface. This would indicate discontinuities in the computed 
tangential velocities, which would contradict the velocity continuity conditions meant to be 
satisfied at the interface. 
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From a purely algorithmic point of view the boundary layer produced by use of the Brinkman 
equation is a nuisance; its presence must be accommodated by mesh resolution or by the use 
of various solution-smoothing techniques such as those employed in the studies mentioned 
above. An advantage of the Darcy-slip formulation is that it does not give rise to this boundary 
layer and thus avoids the numerical difficulties associated with resolving it. Instead, the effects 
of this layer are accounted for through the slip condition of Beavers and Joseph.38 We argue 
here that the Darcy-slip formulation is preferred over the Brinkman formulation because of this 
issue. As long as the characteristic length scales associated with the problem to be solved are 
much larger than the boundary layer in the porous region, the Darcy-slip formulation adequately 
and economically yields solutions for porous/open fluid problems. 

We present our model problem and the two mathematical formulations in Section 2. In Section 
3 we detail a novel finite element implementation of the Darcy-slip formulation and the 
numerical approach required for the Brinkman formulation. Results are put forth in Section 4. 
Further discussion on the strengths and weaknesses of the formulations will be presented in 
Section 5. 

2. PROBLEM SPECIFICATION AND FORMULATION: THE SPONTANEOUS 
IGNITION O F  A COAL STOCKPILE 

We employ the coal stockpile ignition problem" as our model system for evaluating solution 
strategies for coupled flows within porous and open domains. In this problem the shape of the 
coal pile is assumed to be a frustrum surrounded by a homogeneous air region (see Figure 3(a)). 
The coal pile is considered 

Z 

;o be an isotropic porous medium in which an exothermic oxidation 

Axis of O P E N  AIR DOMAIN 
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Figure 3. The coal stockpile ignition problem is used to study numerical formulations for a porous/open fluid system. 
(a) The axisymmetric domain includes the coal region and the surrounding air. (b) The mesh used for all calculations 

comprises 600 elements 
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reaction is occurring. Oxygen from the surrounding air enters the pile to fuel the reaction; the 
subsequent release of heat raises the temperature of the pile, which in turn drives buoyant flows 
within and outside the stockpile. We assume that the temperature, concentration, velocity and 
pressure fields are axisymmetric and solve for steady states of the system. 

2.1. Heat and mass transfer and chemical reaction 

Governing equations for heat and mass transfer through the system must account for the 
different thermophysical properties in each domain as well as the chemical reaction occurring 
in the coal stockpile. In the open fluid domain these equations take the non-dimensional forms 

Within the coal stockpile 

1 
V‘VC = - v2c, 

SCO 

1 
v*VT=-V’T+-PDaCexp y- 

PrP ( 1 f T ) ’  

1 
v.VC = - V2C - DaC exp y __ 

SCP ( I f  T)‘ 

(7) 

(9) 

In the above equations the dimensionless velocity is defined as v = i p r e r L / p ,  the dimension- 
less temperature is given by T = (T  - Tref)/Tref and the dimensionless oxygen concentration is 
denoted by C = c/cr,,, where dimensional quantities are denoted by an overtilde and the 
subscript ‘ref denotes reference or ambient conditions. All symbols are defined in the Appendix. 
The dimensionless Prandtl number Pr and Schmidt number Sc take different values in the open 
air and porous coal pile domains, as indicated by subscripts ‘0’ and ‘ p ’  respectively. These 
parameters, as well as the Prater number P. the Damkohler number Da and the Arrhenius 
number y ,  are defined in Table I. 

Table I. Definitions and values of dimensionless parameters used in calculations 

Symbol Description Definition Value 

Damkohler 
Prandtl number for air in open fluid region 
Prandtl number for air in porous region 
Rayleigh number 
Schmidt number for air in open fluid region 
Schmidt number for air in porous region 
Slip coefficient 
Prater number (adiabatic temperature rise) 
Arrhenius number 
Ratio of effective Brinkman and real viscosities 
Dimensionless permeability 

Varied in bifurcation diagram calculations (Figures 4 and 9). 
t Varied for calculations shown in Section 4.3. 
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Across the interface of the stockpile we specify continuity of the temperature and oxygen 
concentration and the heat and oxygen flux: 

1 1 
- n . V C , = - n . V C , ,  
S C P  sc,  

where n denotes a unit vector normal to the surface of the coal pile. 
Along the centreline and top of the open domain (see Figure 3(a)) no-flux conditions are set 

for heat and mass transfer. Along the ground the temperature is set to its ambient value and a 
no-flux condition is applied for oxygen transfer. Along the outer edge of the computational 
domain the temperature and concentration fields are set to ambient values. 

2.2. Flow in the open domain and boundary conditions: Nauier-Stokes equation 

The flow in the open domain is governed by the steady state, Navier-Stokes equations, written 
here in dimensionless stress divergence form for an incompressible fluid with the Boussinesq 
approximation:61 

v - v  = 0, (15) 

where Ra is the dimensionless Rayleigh number (defined in Table I) and e, is a unit vector 
oriented upwards against the direction of the gravitational force vector. The total stress tensor 
for a Newtonian fluid in the open fluid region, a, in equation (14), is given in dimensionless 
terms by 

a, = -PI + (VV + VVT), (16) 

where the dimensionless dynamic pressure is defined as P = (P" + prefgz)LZp,,,/p2, I is the identity 
tensor and superscript T denotes the transpose operation. 

The Navier-Stokes equations require the application of two distinct boundary conditions 
along all surfaces in this two-dimensional geometry. At the porous/open fluid interface we require 
continuity of normal stress: 

n - n - a ,  = n * n . a , ,  (17) 

where (r denotes the total stress tensor for the fluid in each domain. The second boundary 
condition is a specification of the shear stress at the interface, t . n . a,, and depends on our choice 
of the flow equation in the porous region. The specific forms for this boundary condition and 
for a, will be presented in Sections 2.3.1 and 2.3.2. 

To complete the specification of boundary conditions for the Navier-Stokes equations and 
the open fluid domain, the following choices are made. Stress-free boundary conditions are 
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imposed along the outer and upper surfaces of the computational domain. No-slip conditions 
are specified along the ground surface outside the coal pile and axisymmetry is enforced along 
the centreline in the open region. 

2.3. Flow in the porous domain and matching conditions 

2.3.1. The Darcy-slip formulation. If we choose to apply Darcy’s law, equation (l), to describe 
buoyant flows within the porous medium, the dimensionless governing equations are as follows. 
We assume that the fluid is incompressible, apply the Boussinesq approximation62v63 and express 
Darcy’s law in stress divergence form to yield 

v . v = o ,  (19) 

where I is the dimensionless permeability (sometimes referred to as the Darcy number). The 
total stress tensor associated with Darcy’s law is given by 

cp = -PI. (20) 

This form is used to satisfy the normal stress continuity condition of equation (17). Note that 
the total stress tensor is isotropic, so the shear stress in a Darcy fluid is identically zero. 

Only one boundary condition is needed for Darcy’s law. This condition is chosen to require 
continuity of the flow normal to the boundary of the porous domain: 

n . v ,  = n . v , .  (21) 

For the second boundary condition for the Navier-Stokes equation one might be tempted 
to balance shear stresses tangential to the interface; however, this is not tenable, since, as 
discussed above, there are no shear stresses associated with Darcy’s law. In reality the 
shearing force from the flow in the adjacent open region will be exerted on the fluid within 
the porous medium and on the solid porous structure itself. If the viscous shear force is not 
all transferred to the fluid in the porous region, it is reasonable to assume that the volume- 
averaged tangential velocity is discontinuous over the interface. This is the argument which leads 
to the slip condition originally put forth by Beavers and Joseph.38 

When using Darcy’s law, we employ a slip condition at  the porous/open fluid interface for 
the shear stress boundary condition of the Navier-Stokes equation. Jones44 extended the 
Beavers-Joseph condition to multidimensional flows by realizing the close relationship between 
the velocity derivative in equation (3) for unidirectional flow and the shear stress in the fluid of 
the open domain. The following dimensionless, vectorial form of Jones’s modification to the 
Beavers-Joseph condition 

is applied at the interface between the coal pile and surrounding air in our Darcy-slip 
formulation. The quantity t in the above equation denotes a unit vector tangent to the 
porous/open fluid interface. No normal flow boundary conditions are applied at the remaining 
boundaries of the porous domain, namely the system centreline and the bottom of the coal pile. 
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2.3.2. The Brinkman formulation. The application of the Brinkman equation (2) to describe 
flows in the porous medium is straightforward. The dimensionless representation for an 
incompressible, Boussinesq fluid is given in stress divergence form by 

(24) v - v  = 0, 

with the total stress tensor 

ap = -PI + q(Vv + VVT), ( 2 5 )  

where r]  3 p ' / p  is the ratio of the effective viscosity of the Brinkman equation to that of the 
fluid in the open region. The stress tensor has the same form as that for the Newtonian fluid, 
equation (16), with the exception that the effective viscosity p' multiplies gradients of velocity 
rather than the true fluid viscosity p. This form of the total stress tensor is supplied to 
equation (17) for continuity of normal stress across the porous/open fluid interface. 

The higher-order derivative of the velocity field in Brinkman's equation results in the need 
to specify two boundary conditions. These are supplied by matching normal and tangential 
velocities across the porous/open fluid interface: 

n vp = n v,, 

t - vp = t * v,. 

(26) 

(27) 

When the Brinkman equation is used in the porous region, the secondary boundary condition 
for the Navier-Stokes equation requires the shear stresses to balance over the interface. It should 
be noted that the physical interpretation of this condition remains an open issue. For example, 
Nield and Bejad4 argue that the integration of fluid stresses within the porous medium is over 
a smaller area at the porous/open interface than for the fluid in the open region, so a condition 
equating the stresses cannot be rigorously true. Nevertheless, we follow past convention and 
simply equate the fluid shear stresses at the interface: 

t . n . a ,  = t - n - o , .  (28) 

No-slip conditions are provided along the bottom of the coal pile and axisymmetry is 
imposed along the centreline. 

3. NUMERICAL METHODOLOGY 

We employ the Galerkin finite element m e t h ~ d ~ ~ . ~ ~  to solve the system of partial differential 
equations resulting from each formulation. A finite element mesh consisting of quadrilateral 
elements is constructed over both porous and open domains, with elemental boundaries falling 
along the interface between the domains (see Figure 3(b)). Within each domain the appropriate 
governing equations are discretized and the proper boundary conditions are implemented. 

In the following subsections we present an overview of our approach. For the sake of brevity 
we avoid an extended discussion of routine Galerkin finite element methodology and focus 
instead on the details involved with discretization of the Darcy and Brinkman equations and 
implementation of the matching conditions at the porous/open fluid interface. 
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3.1. Discretization of the open domain equations 

In the open fluid region the temperature, concentration and velocity fields are approximated 
using expansions of nine-node biquadratic basis functions q5i, while piecewise linear, dis- 
continuous basis functions r i  (three per element) approximate the pressure: 

N O 3  

P(r, z )  = 1 W ( r ,  z), 
i =  I 

where u: and ui are the velocity unknowns, N o  is the number of nodes and N o V p  is the number 
of pressure unknowns, all defined for the open fluid region. This mixed-order formulation 
(sometimes called the Q2P1 or 9/3 element6’) has been demonstrated to be particularly efficient 
when used with the Galerkin finite element method to solve for incompressible 

Galerkin’s method is applied to the conservation equations (6) and (7) and the Navier-Stokes 
equations (14) and (15), which are integrated over the open fluid domain and weighted by 
multiplication by the appropriate basis function. Equations (6), (7) and (14) are then reduced to 
the weak form via integration by parts and the natural and essential boundary conditions along 
the top, outer, bottom and centreline of the open domain are implemented in the standard 
manner.6 5 q 6 6  

The weighted residual of the momentum balance equation (14) in the open fluid region is 
given by the vector equation 

where k = r, z .  We will discuss the implementation of matching conditions along the surface of 
the porous medium for each formulation in the following subsections. 

3.2. Discretization of the porous domain equations 

biquadratic basis functions: 
In the porous coal region the temperature and concentration fields are approximated by 

where the coefficients Ti  and C’ are mathematical unknowns for these expansions in the porous 
region and N ,  is the total number of nodes in this region. 

Analogously to the procedure discussed above, Galerkin’s method is applied to the con- 
servation equations (8) and (9), which are reduced to the weak form. The boundary conditions 
are implemented using standard finite element rne th~do logy .~ ’ .~~  Conveniently, the continuity 
conditions along the coal stockpile surface, equations (1 1)-(13), are naturally satisfied through 
the construction of the finite element basis functions and the weak form of the Galerkin weighted 
residuals. 
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The formulations for calculating flows through the porous medium and the implementation 
of matching conditions along the surface of the porous medium will be discussed in the following 
subsections. 

3.2.1. The Darcy-slip formulation. We employ the following approach to solve Darcy’s law 
within the porous medium. Since the continuity equation (19) is always solved in conjunction 
with the momentum balance equation (18), the two equations can be combined into a single 
equation for the pressure field: 

IRa v . ( - V P  + PPr, Te , )  = 0. (34) 

The velocity field within the porous medium is obtained by differentiating the pressure solution 
using the following derivation from equation (18): 

IRa 
v = - I V P  + - Te,.  

BPr, 
(35) 

This type of formulation is commonly applied to describe flow through a saturated porous 
medium (see e.g. Reference 71); however, we believe that this is the first such application to 
coupled flows between a porous medium and an adjacent homogeneous fluid. 

Interestingly, this approach may be superior to the mixed-order, primitive variable discretiza- 
tion owing to the inherent stability and convergence properties associated with the form of the 
finite element approximation to equation (34). While we present no direct evidence to support 
this contention here, it is consistent with our experiences in attempting to solve the coal stockpile 
ignition problem early-on, when a mixed-order discretization of velocity and pressure often 
yielded poor results (in terms of mass conservation difficulties and non-convergence with mesh 
discretization). There is also an interesting mathematical similarity between Darcy’s law and the 
equations for inviscid, potential flow which supports the above hypothesis. For the case of an 
isothermal system with constant physical properties equation (34) simplifies to become Laplace’s 
equation for the pressure, i.e. V2P = 0; the description of potential flows can similarly be reduced 
to Laplace’s equation for the potential. Lee et al. 7 2  employed the Galerkin finite element method 
to compute potential flows and found that solving the Laplace formulation with subsequent 
differentiation of the potential to yield the velocity field produced much more accurate results 
than use of a mixed method to directly solve for the velocity field. In fact, mixed formulations 
which performed well for viscous flows (such as the 9/3 element) were found to be very poor for 
inviscid flows. Consistent with these findings, it would not be surprising if the solution of equation 
(34) for the pressure field alone yielded better results than solution of the mixed-order, primitive 
variable discretization of Darcy’s law. 

Returning to implementation issues, the pressure field in the porous medium is expanded 
using biquadratic basis functions, 

and the Galerkin weak form of equation (34) is formed. Green’s theorem is applied to the entire 
equation, and the resulting expression in the surface integral is identified to be the fluid velocity 
from equation (35), to yield 
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Note that we have used equation (35) to write the surface integral of the above expression in 
terms of the velocity of the porous medium. This implementation simplifies the specification of 
boundary conditions for the pressure field within the porous medium, since they can be posed 
in terms of normal velocities along the domain surfaces. No-penetration boundary conditions, 
such as those applied along the system centreline and the ground, can be satisfied naturally by 
ignoring the surface integral in equation (37). Along the porous/open fluid interface the 
requirement of continuous normal flow between the regions, equation (21), is satisfied in the 
weak sense by substituting the normal velocity from the open region n-v, ,  into the surface 
integral of equation (37). 

The remaining two interfacial boundary conditions, equations (17) and (22), are imposed 
through the surface integral of the Navier-Stokes residual, equation (32), in the following manner: 

(38) 

where dD,,, refers to the interface between the porous and open fluid domains, the subscript 
k = r,  z, and up is given by equation (20) which involves only the dynamic pressure within the 
porous medium. 

) 
U. 

(e, n) - up + (e, * t) p (t - v, - t . v,) 4’ dS, 
Imp, (  

ek4’n:u, dS = s aDP.0 

3.2.2. The Brinkman formulation. For the Brinkman formulation we employ the same 
mixed-order representation of the velocity and pressure fields in the porous domain as that 
employed for the Navier-Stokes equations in the open fluid domain: 

N P . P  
P(r, z )  = C PT’(r, z), 

i =  1 

where N, is the number of nodes and NpVP is the number of pressure unknowns in the porous 
domain. The Galerkin weak form of the Brinkman equation (23) is 

where k = r,  z. 
No-slip and axisymmetric boundary conditions are implemented along the coal pile bottom 

and centreline respectively using standard finite element m e t h ~ d o l o g y . ~ ~ . ~ ~  The continuity 
conditions of velocity and stress along the porous/open fluid interface, equations (17) and 
(26)-(28), are automatically satisfied by the continuity of the finite element basis and the additive 
cancelling of the boundary integrals arising from the weak form of the Galerkin weighted 
residuals, equation (32) and (41). The simplicity of this formulation makes the Brinkman 
formulation particularly attractive; in fact, only minor modifications are needed to convert 
existing Navier-Stokes codes to solve porous/open fluid problems (see e.g. Reference 73). 

3.3. Solution of governing equations and parametric continuation 

The finite element expansions are substituted into the Galerkin residual equations and 
nine-point Gaussian quadrature74 is employed to convert the integral equations into a large set 
of non-linear algebraic equations. The Newton-Raphson method74 is used to solve this system 
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iteratively and pseudo-arc-length c ~ n t i n u a t i o n ~ ~  is implemented to track the steady state 
solutions as a function of the Damkohler number. The resulting Jacobian matrix has an ‘arrow’ 
structure; it is banded except for the final row and column, which are full owing to components 
associated with the continuation routine. A direct solver written specifically for this type of 
matrix structure is used to solve the linear ~ystem.’~ 

Figure 3(b) displays the finite element mesh used in all calculations performed here. This mesh 
consisted of 600 biquadratic elements and produced numerically convergent results for the 
Darcy-slip formulation under the conditions considered here, as verified in mesh resolution 
studies presented in Reference 77. The Darcy-slip formulation for this mesh resulted in a total 
of 10,592 mathematical degrees of freedom, while the Brinkman formulation on the same mesh 
produced 11,796 total unknowns. While the total number of unknowns was smaller for the 
Darcy-slip formulation owing to the pressure discretization discussed in Section 2.3.1, our 
numbering scheme resulted in a slight increase in the bandwidth of the Jacobian matrix. The 
Darcy-slip formulation required approximately 11 5 CPU seconds per Newton-Raphson 
iteration as compared with 150 CPU seconds per iteration for the Brinkman formulation on 
the Cray X-MP at the Minnesota Supercomputer Center. Each bifurcation diagram required 
6-10 CPU hours. 

4. RESULTS 

We consider reaction, transport and flows within and around a porous coal stockpile which is 
shaped as a frustum sitting on the ground and surrounded by the atmosphere (see Figure 3(a)). 
The base of the coal pile has a dimensionless radius of unity, the dimensionless height of the 
pile is +, and the top of the coal pile has a dimensionless radius of $. The values of the parameters 
and dimensionless groups employed for this study are listed in Table I. Typical solutions to this 
problem are discussed in Section 4.1. A comparison between the Darcy and Brinkman 
formulations is presented in Section 4.2 and the effect of the value employed for the empirical 
Beavers-Joseph slip coefficient in the Darcy-slip formulation is examined in Section 4.3. A more 
comprehensive analysis of the ignition behaviour of coal stockpiles is presented in another 
paper.“ 

4.1. The coal stockpile ignition problem 

We first present typical solutions to our model problem to set the stage for a critical 
examination of the different numerical formulations. Figure 4 shows a bifurcation diagram for 
the coal stockpile ignition problem where the maximum dimensionless temperature of the coal 
pile is plotted for each steady state solution as the Damkohler number Da is varied. The system 
exhibits multiple steady state solutions over a large range of Damkohler numbers, 

The S-shaped curves shown here are common for systems which display hysteresis phenomena 
and consist of three separate branches. The lower branch, near T,,, = 0, consists of stable, 
extinguished steady states. This solution branch terminates at a turning point near Da FZ 1, 
which is termed the ignition point. The central section of the curve, where the slope is negative, 
represents temporally unstable steady state solutions. The upper branch is formed by stable, 
ignited solutions where reaction and transport rates are high enough to sustain vigorous 
combustion in the coal pile. The ignited branch is bounded by a turning point, termed the 
extinction point, at lower values of Damkohler number. 

Typical features of steady states for this system are displayed in Figure 5, which shows 

10-3 5 ~a I 1. 
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Figure 4. A bifurcation diagram plots the maximum temperature of steady state solutions versus the Damkohler number 
Da for both the Brinkman and Darcy formulations. Features of solutions at point A are shown in subsequent figures 

streamfunction, temperature and concentration contours associated with a solution calculated 
with the Darcy-slip formulation; the solution corresponds to point A in Figure 4 and will be 
used to compare results from the two formulations in the next subsection. The streamlines 
indicate that fluid is flowing over and through the porous medium, with a strong plume rising 
from the top centre of the pile. The absolute magnitude of the streamfunction drops dramatically 
from the open fluid region to the interior of the coal stockpile, thus indicating much weaker 
flows within the porous medium. Smooth temperature and concentration contours within the 
porous region indicate that heat and mass transfer are dominated by diffusive phenomena within 
the coal pile. Distorted contours shaped by the buoyant plume above the pile show the 
importance of convective transport in the open fluid region. 

4.2. A comparison of Brinkman and Darcy formulations 

The bifurcation diagram discussed previously (Figure 4) shows curves obtained from both the 
Darcy and Brinkman formulations. Interestingly, although the positions of the ignited branches 
clearly differ, the formulations yield results which appear to be quite similar along the lower 
and middle branches of the diagram. However, a careful comparison of the predicted flows 
within the porous medium reveals significant differences between the two formulations. 

We specifically examine the steady state solution denoted by point A in Figure 4. Two cuts 
through the model domain, indicated in Figure 6, will be employed to display radial and axial 
velocity profiles predicted by the different formulations in Figures 7 and 8. Note that for the 
Darcy formulation the fluid velocities are obtained by postprocessing the pressure and tempera- 
ture fields in the porous medium via equation (35). 

Figure 7 compares the radial velocity u, plotted as a function of axial position for the two 
formulations. The Darcy-slip solution is smooth through the porous region; the circular symbol 
shows the discontinuity in tangential velocity at the surface of the pile which results from the 
Beavers-Joseph slip condition. The Brinkman solution oscillates from node to node within the 
porous medium; these oscillations are largest at  the two surfaces of the coal pile, the ground at  
z = 0 and the porous/open fluid interface at z = i. 

Figure 8 similarly shows axial velocity (u,) profiles along a horizontal cut through the system. 
In Figure 8(a) the velocity scale is expanded to clearly show the solutions through the porous 
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Figure 5. The dimensionless (a) streamfunction, (b) temperature and (c) concentration contours corresponding to point 

A on Figure 4 for the Darcy formulation. The contour spacings are indicated on each plot 

medium. As in the radial velocity profiles shown previously, the Darcy-slip solution is smooth 
through the coal pile while the Brinkman solution exhibits node-to-node oscillations. The circles 
indicate the discontinuous tangential velocity at the porous/open fluid interface predicted by 
the Darcy-slip formulation and the cross marks the interfacial value of the continuous velocity 
predicted by the Brinkman formulation. Figure 8(b) plots the same velocity profiles and interface 
points on a scale to include the velocity in the open fluid region. Clearly the two implementation 
schemes yield similar results for the flow in the open fluid region. 

4.3. Sensitivity to the slip coefficient 

The Beavers-Joseph condition, equation (3), contains an empirical quantity, the slip coefficient 
a. While this quantity is postulated to depend only on the properties of the porous material, its 
value for any specific medium is not generally known and often must be determined from 
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Figure 7. A comparison of radial velocity (u,) profiles calculated from the Darcy and Brinkman formulations at  
conditions corresponding to point A on Figure 4. The porous/open fluid interface is located at z = f. The circle represents 

the discontinuity in the Darcy-slip solution 

experiments. In all the calculations presented above a value of a = 1 is employed, which 
is consistent with the derivation of Neale and Nader,45 equation (4), and the choice of 
p' = p for our calculations with the Brinkman formulation. The sensitivity of the Darcy-slip 
solutions to the value of a employed is explored by the calculations presented in this 
subsection. 

Figure 9 shows parts of three bifurcation diagrams calculated with a = 0.1, 1 and 10. The 
three curves are nearly indistinguishable, so the ignition behaviour predicted by our coal 
stockpile model is not strongly affected by the value of the slip coefficient. Figures 10 and 11 
show radial and axial velocity profiles along the cuts indicated in Figure 6 which were obtained 
using the three different values of a. Larger values of the slip coefficient result in greater 
discontinuities between the porous and open fluid velocities. However, the profiles do not change 
dramatically for the large variations in a considered here. 
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Figure 9. Bifurcation diagrams calculated for three values of the slip coefficient (a = 01,  1 and 10) show that the value 
of a has little overall effect on the ignition behaviour 
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Figure 10. Comparison of radial velocity (u,) profiles at the turning point in Figure 9 for three different values of the 
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5. CONCLUSIONS 

Two different formulations which simultaneously resolve incompressible flows in a porous 
medium and a surrounding open fluid were applied to the coal stockpile ignition problem. 
Interestingly, the two curves in the bifurcation diagram of Figure 4 were very similar, indicating 
that the overall behaviour of the system was not strongly affected by the choice of formulation. 
This result is not surprising, since prior studies of this system” have shown that ignition-extinc- 
tion phenomena are most strongly affected by convective transport through the open fluid region 
and diffusive transport within the porous medium rather than by flows within the coal pile. 

The two formulations produced very different solutions for the velocity field within the porous 
medium. For calculations performed under identical conditions and on the same finite element 
mesh the Darcy-slip formulation yielded smooth solutions, while the Brinkman formulation 
produced a velocity field which contained significant oscillations throughout the porous domain. 
These oscillations or ‘wiggles’ are commonly observed in solutions to transport problems 
obtained using the Galerkin finite element method and broadcast a strong signal regarding the 
accuracy of the ~olut ion.~’  Since the objective of this study was to directly compare the 
performance of the two formulations under comparable discretizations, we did not pursue an 
extensive study of mesh resolution for the Brinkman solution. However, some comments on this 
issue may be useful. Several tests on meshes with more degrees of freedom indicated that mesh 
resolution for the Brinkman formulation tended to smooth the velocity profiles through the 
bulk of the porous region, yet the oscillations near the porous/open interface persisted for the 
several discretizations tested. This behaviour is consistent with our experience with other 
formulations for this problem (see the comments on use of a mixed-order discretization for 
Darcy’s law in Section 3.2.1) and with the experience of other researchers who have employed 
the Brinkman formulation for porous/open fluid problems.79 Certainly, elements adjacent to the 
interface must be small enough to resolve the porous boundary layer, whose thickness is I!~(K~/’). 

Such an approach was used successfully by Nishimura et al. ’~5 Alternatively, numerical algo- 
rithms designed to damp such oscillations might be employed. The control volume scheme of 
Beckerman et al.” is an example of this approach. Gresho and Lee7’ warn, however, that 
techniques which a priori suppress wriggles must be used with great care to avoid inaccurate 
(but smooth) solutions on coarse meshes. 

Each formulation presented certain advantages and disadvantages for solving the model 
problem considered here. The Darcy-slip formulation proved capable of yielding smooth 
solutions on a mesh which proved to be too coarse for the Brinkman formulation. Accurate 
solutions for the Darcy-slip formulation would likely be obtained with still coarser meshes than 
that employed here. For any given mesh size the Darcy-slip formulation will require fewer 
computational resources than the Brinkman formulation, since fewer mathematical degrees of 
freedom are needed. Our Darcy-slip implementation discretized only the pressure field in the 
porous medium rather than both the velocity and pressure fields as required by the Brinkman 
formulation. A potential disadvantage of the Darcy-slip formulation is the empiricism associated 
with the Beavers-Joseph condition; however, results of Section 4.3 demonstrated that the 
computations were relatively insensitive to the specific values employed for the slip coefficient. 

The great advantage of the Brinkman formulation is the simplicity of its formulation and 
implementation, especially with regard to matching conditions between the porous and open 
fluid domains. However, this simplicity carries with it a significant computational burden to 
resolve the thin boundary layer at the surface of the porous medium. Indeed, this additional 
computational effort may not be justified in all situations, such as when the thickness of the 
porous boundary layer is much smaller than characteristic length scales of the system. 
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We advocate the use of the Darcy-slip formulation presented here for the solution of 
large-scale, coupled flows in porous and open fluid systems. While not as easily implemented 
as the Brinkman formulation, this approach proved superior in terms of solution accuracy, 
algorithmic robustness and computational costs. 
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APPENDIX: NOMENCLATURE 

pre-exponential rate factor 
dimensionless concentration 
heat capacity of air 
mathematical domain volume 
diffusion coefficient 
Damkohler number (see Table I) 
average particle diameter 
unit co-ordinate vector 
activation energy 
gravitational vector 
channel width in channel flow configuration (see Figure 1) 
identity tensor 
thermal conductivity 
characteristic length, chosen as radius of coal pile bottom 
unit normal vector 
number of degrees of freedom in finite element expansions 
dimensionless dynamic pressure 
Prandlt number (see Table I) 
dimensionless radial co-ordinate 
gas law constant 
Rayleigh number (see Table I) 
Schmidt number (see Table I) 
unit tangent vector 
dimensionless temperature 
dimensionless velocity 
dimensionless axial co-ordinate 
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Greek letters 
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slip coefficient in Beavers-Joseph equation (3) 
Prater number (dimensionless adiabatic temperature rise) (see Table I) 
coefficient of thermal expansion 
Arrhenius number (see Table I) 
piecewise discontinuous, linear basis functions 
boundary layer thickness 
heat of reaction 
porosity of coal pile 
ratio of effective and true viscosities (see Table I) 
permeability 
dimensionless permeability (see Table I) 
viscosity of air 
effective viscosity in porous medium, used in Brinkman equation (2) 
density of air 
stress tensor 
biquadratic basis functions 
streamfunction 

Mathematical symbols 

V dimensionless gradient operator 
* dot product 
aD boundary of domain D 

Subscripts 

o 
p 
r radial direction 
ref 
z axial direction 

in the open fluid domain 
in the porous medium domain 

at reference or ambient conditions 

Superscripts 

i numerical index 
T transpose - dimensional quantity 
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